

## RIGOROUS AND SIMPLIFIED LATTICE-HOLE EQUATIONS OF STATE FOR CALCULATING SPECIFIC VOLUMES OF COMMON PURE POLYMERS

Hun Yong Shin, Ki-Pung Yoo<sup>†</sup>, Chul Soo Lee\*, Keiji Tamura\*\* and Yasuhiko Arai\*\*\*

Department of Chemical Engineering, Sogang University, Seoul 121-742, Korea

\*Department of Chemical Engineering, Korea University, Seoul 136-701, Korea

\*\*Production Technology Center, Idemitsu Petrochemical Co., Ltd., Chiba 299-01, Japan

\*\*\*Department of Chemical Engineering, Kyushu University, Fukuoka 812, Japan

(Received 28 February 1997 • accepted 14 October 1997)

**Abstract** – Specific volumes of common pure polymers such as low- and high-density poly(ethylene), poly(n-butyl methacrylate), poly(styrene), and poly(o-methylstyrene) were calculated by the NLF and the MF-NLF equations of state, which were developed from nonrandom lattice-hole theory. Both models contain only two molecular parameters for a pure *r*-mer. The NLF model is based on the rigorous approximation of lattice-hole theory and thus it is somewhat complicated in practice. The MF-NLF model is based on the two-fluid approximation of the same lattice-hole theory and thus is relatively more semi-empirical than the NLF, while preserving comparable accuracy. In this work the models were comparatively applied to the calculation of the specific volumes of pure polymers, and the results obtained to date were presented with emphasis on the practical utility of the models.

**Key words:** Specific Volumes, LDPE, HDPE, *Pn*BMA, PS, Poly(orthomethylstyrene), Lattice Theory, Equations of State

### INTRODUCTION

The influence of equation-of-state (EOS) properties on the thermodynamic behavior of polymer systems has received a great deal of attention over the past few decades. As a result, considerable effort has been made to date towards the refinement of statistical-mechanical theories of polymeric fluids. The nearest-neighbor lattice statistical-mechanical theory of Guggenheim [1952] and the cell theory of Prigogine et al. [1957] had a great impact, theoretically and experimentally, on thermodynamic research related to polymer systems. Since then, many EOS theories of polymeric fluids have been proposed.

Some well-known EOSs stem from cell theory [Simha and Somcynsky, 1969, 1971; Flory, 1965; Beret and Prausnitz, 1975; Nies and Stroeks, 1990; etc.]. However a cell-model type partition function requires a separation of internal and external degrees of freedom. External degrees of freedom attributable to a segment of a polymer chain are less than for a similar small molecule. For example, Prigogine et al. [1957] introduced a new parameter 'c' to characterize the decrease in the external degrees of freedom. On the other hand, since the lattice fluid (Ising) theory [Guggenheim, 1952] is not based on a cell concept, the question of how external and internal degrees of freedom are separated is not necessarily encountered, and the introduction of a 'c' parameter is not required.

After the pioneering work of Sanchez and Lacombe [1977, 1978] on the EOS for the Ising fluid, many EOSs originating

from lattice fluid theory have also been proposed [Okada and Nose, 1981; Panayiotou and Vera, 1982; Kumar et al., 1987; Smirnova and Victorov, 1987; etc.]. In the previous papers [You et al., 1993, 1994a, b; Yoo et al., 1995a, b, c], the present authors briefly reviewed the existing Ising theories after Guggenheim [1952].

Recently, a new rigorous EOS based on the nonrandom lattice-fluid theory (called 'NLF') and its simplification by a multi fluid-nonrandom lattice fluid theory (called 'MF-NLF') of pure fluids and their solutions have been formulated by the present authors [You et al., 1993, 1994a, b; Yoo et al., 1995a, b, c; Lee and Yoo, 1997]. These two theories require only two EOS parameters for each pure component and one binary parameter for a mixture. Our general objective in the present paper is to survey the applicability of the NLF and the MF-NLF theory to volumetric properties of pure polymers.

### EOS PROPERTIES FOR PURE POLYMERS

#### 1. NLF-EOS Theory

As we have discussed elsewhere [You et al., 1993, 1994a, b; Yoo et al., 1995a, b, c], the equation of state based on the approximate nonrandom lattice hole theory for pure component is as follows:

$$P = \left( \frac{1}{V_H \beta} \right) \left\{ \frac{z}{2} \ln \left[ 1 + \left( \frac{q_1}{r_1} - 1 \right) \rho - \ln(1 - \rho) \right] \right\} - \left( \frac{z \epsilon_P}{2V_H} \right) \theta_1^2 \quad (1)$$

where

<sup>†</sup>To whom all correspondence should be addressed.  
E-mail: kpyoo@ccs.sogang.ac.kr

$$\varepsilon_p = \varepsilon_{11} \left[ 1 - \left( \frac{\beta \varepsilon_{11}}{2} \right) \theta_0 (2\theta_1 - \theta_0) \right] \quad (2)$$

$$\rho = \frac{V_1^*}{V} = \frac{N_A V_H r_1}{V} \quad (3)$$

$$\theta_1 = \frac{(q_1/r_1)\rho}{1 + \rho(q_1/r_1 - 1)} \quad (4)$$

$$\theta_0 = 1 - \theta_1 \quad (5)$$

$$zq_1 = zr_1 - 2r_1 + 2 \quad (6)$$

$\beta = 1/kT$  and  $N_A$  is Avogadro's number;  $r_1$  is the segment number of an  $r$ -mer and  $q_1$  is the segment surface area parameter. Between these two parameters the relation given in Eq. (6) can be used for open chain  $r$ -mers. We set the coordination number  $z=10$  and the unit cell volume  $V_H=9.75 \text{ cm}^3 \text{ mol}^{-1}$  [You et al., 1994a]. Thus, for a pure fluid we need to determine only two independent molecular parameters,  $V_1^*$  and  $\varepsilon_{11}$ . In the case of polymers,  $V_1^*$  is relatively insensitive with respect to temperature. However,  $\varepsilon_{11}$  is in general a function of temperature; it was regressed at each isotherm and made a simple function of temperature in practice. It is

$$\frac{\varepsilon_{11}}{k} = E_a + E_b(T - T_0) \quad (8)$$

where  $T_0$  is a reference temperature that is arbitrarily set as 298.15 K. Other expressions such as fugacity coefficients, molar configurational internal energy, and second order thermodynamic functions (i.e., the thermal expansion coefficient  $\alpha_1$ , the isothermal compressibility coefficient  $\beta_1$ , etc.) are given elsewhere [You et al., 1993, 1994a, b].

Although the NLF-EOS applicable for pure components given above looks simple, it becomes significantly complicated for the extension to multicomponent systems since it was based on the multidimensional series expansion of the configurational Helmholtz free energy of nonrandom lattice-hole theory [You et al., 1994a, b].

## 2. MF-NLF-EOS Theory

As discussed elsewhere [Yoo et al., 1995; Lee and Yoo, 1997], to simplify the NLF-EOS given above, the present authors introduced the concept of the two-fluid approximation with respect to the nonrandom lattice and hole contribution of the original NLF-EOS. The expression of the MF-NLF-

EOS is

$$P = \left( \frac{1}{V_H \beta} \left\{ \frac{z}{2} \ln \left[ 1 + \left( \frac{q_1}{r_1} - 1 \right) \rho \right] - \ln(1 - \rho) \right\} \right. \\ \left. - \frac{z \theta_1^2}{2V_H \beta} \left( \frac{1 - \tau_{01}}{\theta_0 \tau_{01} + \theta_1} \right) \right) \quad (9)$$

where

$$\tau_{01} = \exp[\beta(\varepsilon_{11} - \varepsilon_{01})] \quad (10)$$

For pure fluids we set  $\varepsilon_{01}=0$ . This EOS can be regarded as a simplified version of the previous NLF theory and the definition of the variables is identical with that of the NLF. Thus, this EOS still contains only two pure molecular parameters,  $V_1^*$  and  $\varepsilon_{11}$ , for a pure system. For  $\varepsilon_{11}$ , the temperature-dependent formula given by Eq. (8) was used.

These two EOSs are readily expandable to multicomponent systems with the introduction of a binary interaction parameter. In this paper, we omit those detailed expressions of the thermodynamic functions of the two models for general mixture systems [You et al., 1994a, b; Lee and Yoo, 1997].

## DATA REDUCTION

To evaluate comparatively the utility of the NLF and MF-NLF models in the calculation of volumetric properties of pure polymeric substances, we arbitrarily selected five common polymers: high density poly(ethylene, HDPE) [Hellwege et al., 1961; Rodgers, 1993], low density poly(ethylene, LDPE) [Hellwege et al., 1961; Rodgers, 1993], poly(n-butyl methacrylate, PnBMA) [Olabisi and Simha, 1975], poly(styrene, PS) [Quach and Simha, 1971], poly(o-methyl polystyrene) [Quach and Simha, 1971].

In applying the EOSs to polymer systems, we estimated the molecular parameters,  $V_1^*$  and  $\varepsilon_{11}$ , from the experimental  $P$ - $\rho$ - $T$  data by the numerical bisection method [Press et al., 1992]. In the regression, the initial estimates of  $\varepsilon_{11}$  were provided by a value around 100, and  $V_1^*$  was given by a value of 0.7 times the molecular weight of a candidate polymer in general. The best fitted EOS parameters,  $V_1^*$  and  $\varepsilon_{11}$ , for each pure polymer for the NLF-EOS and MF-NLF-EOS with absolute average error deviations are summarized in Tables 1 and 2, respectively.

Table 1. The energy and volume parameters for the NLF model<sup>†</sup>

| Polymer                   | $E_a$<br>K | $E_b$<br>— | $V_1^*$<br>$\text{cm}^3/\text{g}$ | AAD (%) |
|---------------------------|------------|------------|-----------------------------------|---------|
| High-density polyethylene | 124.49832  | .05120     | 1.09963                           | .469    |
| Low-density polystyrene   | 115.18157  | .10513     | 1.09445                           | .309    |
| PnBMA                     | 118.11379  | .10507     | .88553                            | .577    |
| Polystyrene               | 130.90941  | .08278     | .88600                            | .283    |
| Poly(orthomethylstyrene)  | 139.32543  | .05208     | .90828                            | .223    |

<sup>†</sup> $V_1^*$  = the temperature independent specific volumes

AAD = 1/(number of data)  $\sum(|\text{volume}_{\text{exp}} - \text{volume}_{\text{cal}}|)/\text{volume}_{\text{exp}} \times 100$

**Table 2. The energy and volume parameters for the MF-NLF model<sup>†</sup>**

| Polymer                  | $E_a$<br>K | $E_b$<br>- | $V_1^*$<br>cm <sup>3</sup> /g | AAD (%) |
|--------------------------|------------|------------|-------------------------------|---------|
| High-density polystyrene | 133.80667  | .012020    | 1.08668                       | .424    |
| Low-density polystyrene  | 122.46545  | .08800     | 1.08501                       | .267    |
| PnBMA                    | 132.09898  | .04216     | .88036                        | .419    |
| Polystyrene              | 146.18205  | .03096     | .87741                        | .247    |
| Poly(orthomethylstyrene) | 160.63812  | -.03558    | .89826                        | .228    |

## RESULTS AND DISCUSSION

Experimental and calculated specific volumes of high-density poly(ethylene, HDPE) [Hellwege et al., 1961; Rodgers, 1993] at various temperatures and pressures by the NLF and the MF-NLF are shown in Fig. 1. Although the formulation of the NLF is self-consistent with a sound theoretical basis, a less complicated model would be more convenient in engineering-oriented phase equilibrium calculations. Thus, with this background in mind, we developed the MF-NLF model while preserving comparable accuracy with respect to the NLF. As can be seen from Tables 1 and 2, the overall AAD by the NLF was found to be 0.464, whereas it was 0.424 for the case of MF-NLF. Both models showed reasonably comparable accuracy although the predicting capacity of the MF-NLF was slightly better than that of the NLF. In Fig. 2, a similar comparison of both models is shown for the experimental specific volumes of the low-density poly(ethylene, LDPE) [Hellwege et al., 1961; Rodgers, 1993]. Again the AAD was 0.309 for the case of the NLF and 0.267 for the case of the MF-NLF.

In Fig. 3, the experimental and calculated specific volumes

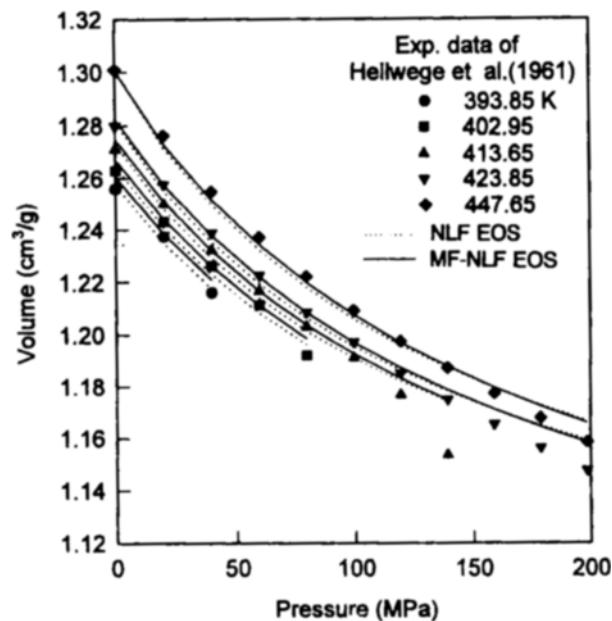


Fig. 2. Calculated and experimental specific volumes of low-density poly(ethylene, LDPE) as functions of temperature and pressure.

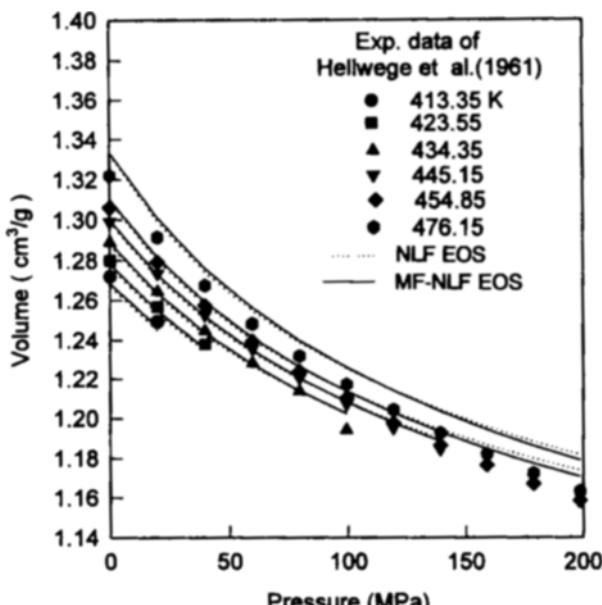


Fig. 1. Calculated and experimental specific volumes of high-density poly(ethylene, HDPE) as functions of temperature and pressure.

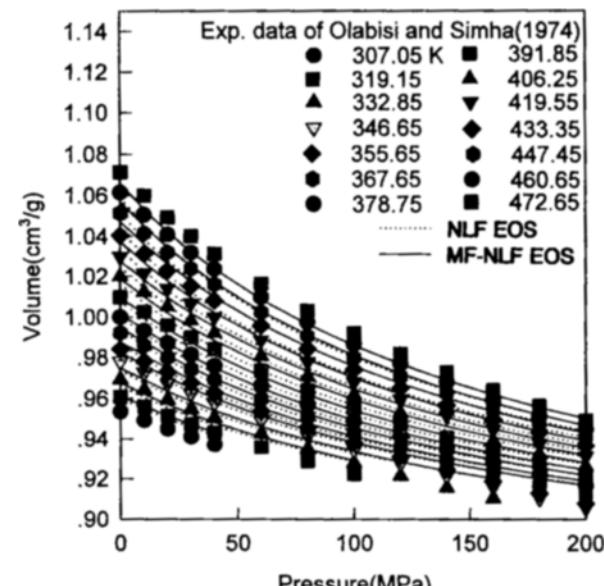


Fig. 3. Calculated and experimental specific volumes of poly(n-butyl methacrylate, PnBMA) as functions of temperature and pressure.

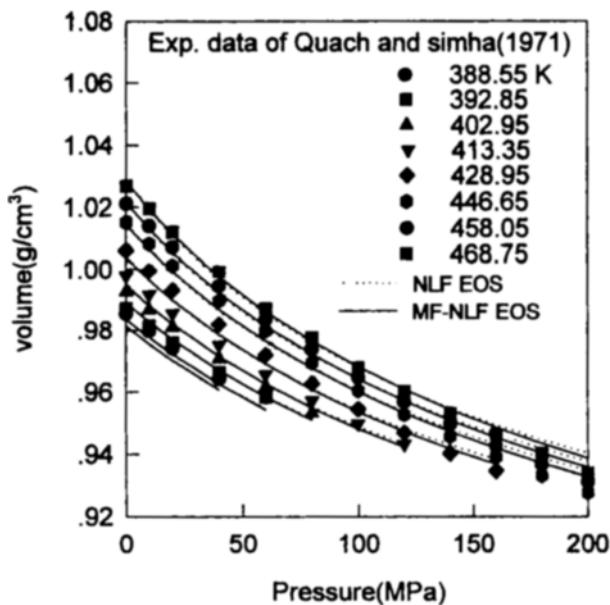


Fig. 4. Calculated and experimental specific volumes of poly(styrene, PS) as functions of temperature and pressure.

by NLF ( $AAD=0.577$ ) and MF-NLF ( $AAD=0.419$ ) of poly(n-butyl methacrylate, PnBMA) [Olabisi and Simha, 1975] are shown. Both models predict the volumetric properties of PnBMA quantitatively well enough for the purpose of engineering calculations.

As final demonstrations of the applicability of the NLF and the MF-NLF to the volumetric properties of polymers, the calculated results for poly(styrene, PS) [Quach and Simha, 1971] and poly(o-methylstyrene) [Quach and Simha, 1971] are shown in Figs. 4 and 5, respectively.

Since we have demonstrated elsewhere in detail [Yoo et

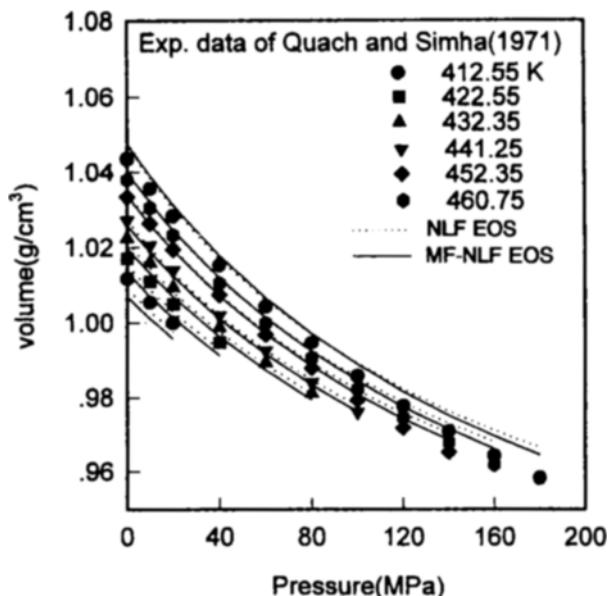


Fig. 5. Calculated and experimental specific volumes of poly(o-methylstyrene) as functions of temperature and pressure.

al., 1993, 1994a, b; Yoo et al., 1995a, b, c] the theoretical soundness of both EOSs and their advantages over the existing models in the same genre, such as the EOSs after Sanchez and Lacombe [1977], Panayiotou and Vera [1982], and Kumar et al. [1987], we omit here further comparisons of the practical applicability of the two models with other existing models.

## CONCLUSION

We have demonstrated the practical applicability of the NLF and the MF-NLF EOSs to the calculation of specific volumes of common pure polymers. The advantage of the NLF is that it is based on a sound statistical-mechanical basis of nonrandom lattice-hole theory after Guggenheim [Guggenheim, 1952]. However, the MF-NLF model is based on a semi-theoretical improvement of the lattice-hole by the introduction of a nonrandom two-fluid approximation with respect to the residual nonrandomness contribution. Thus, the expression of the MF-NLF is much simpler than that of the NLF.

We found that both models appear to be equally applicable to engineering-oriented volumetric properties calculations of various polymer systems. As for the preferential utilization of the NLF or the MF-NLF models, the present authors wish to leave that to the users.

## ACKNOWLEDGMENT

The authors are grateful to the Korea Ministry of Energy, Resources and Trade for financial support.

## NOMENCLATURE

|       |                                                          |
|-------|----------------------------------------------------------|
| $E_a$ | : coefficient in Eq. (8) [-]                             |
| $k$   | : Boltzmann factor [ $\text{JK}^{-1}$ ]                  |
| $N_A$ | : Avogadro's number [ $\text{mol}^{-1}$ ]                |
| $P$   | : pressure [MPa]                                         |
| $q$   | : segment surface area parameter [-]                     |
| $r$   | : segment number [-]                                     |
| $T$   | : temperature, $T_0 =$ reference temperature, 298.15 [K] |
| $V$   | : system volume [ $\text{cm}^3$ ]                        |
| $V_a$ | : coefficient in Eq. (9) [-]                             |
| $V_H$ | : unit lattice cell volume [ $\text{cm}^3$ ]             |
| $z$   | : coordination number [-]                                |

## Greek Letters

|                    |                                                                      |
|--------------------|----------------------------------------------------------------------|
| $\alpha_1$         | : thermal expansivity [ $\text{K}^{-1}$ ]                            |
| $\beta$            | : Boltzmann factor, $=1/kT$ [-]                                      |
| $\beta_1$          | : isothermal compressibility factor [ $\text{bar}^{-1}$ ]            |
| $\varepsilon_{11}$ | : molecular interaction energy between molecules 1 [-]               |
| $\theta_0$         | : effective surface area fraction of holes [-]                       |
| $\theta_1$         | : effective surface area fraction of component 1 [-]                 |
| $\rho$             | : system density [ $1/\text{cm}^3$ ]                                 |
| $\tau_{01}$        | : nonrandomness factor between hole, 0, and occupied molecule, 1 [-] |

## REFERENCES

Beret, S. and Prausnitz, J. M., "A Generalized van der Waals

Equation for Polymers and Other Fluids", *Macromolecules*, **8**, 878 (1975).

Flory, P. J., "Statistical Thermodynamics of Liquid Mixtures", *J. Am. Chem. Soc.*, **87**, 1833 (1965).

Guggenheim, E. A., "Mixtures", Clarendon Press, Oxford, 1952.

Hellwege, V. K.-H., Knappe, W. and Lehmann, P., "Die Isotherms Kompressibilitaet einiger amorpher und teilkristalliner Hochpolymerer im Temperaturbereich von 20-250°C und bei Drucken bis zu 2000 kp/cm<sup>2</sup>", *Kolloid Zeitschrift und Zeitschrift fuer Polymere*, **183**, 110 (1961).

Kumar, S. K., Suter, U. W. and Reid, R. C., "A Statistical Mechanics-Based Lattice Model Equation of State", *Ind. Eng. Chem. Res.*, **26**, 2532 (1987).

Lee, C. S. and Yoo, K. P., "Lattice Hole-based Equations of State and Their Applications to Complex Fluids", Proc. Int. Symp. on Molec. Therm. and Molec. Simulation, January 12-15, Hosei University, Tokyo, Japan, 53 (1997).

Nies, E. and Stroeks, A., "A Modified Hole Theory of Polymeric Fluids. 1. Equation of State of Pure Components", *Macromolecules*, **23**, 4088 (1991).

Okada, M. and Nose, T., "Quasichemical Treatment of Hole Theory of r-Mers. I. Pure Liquids", *Polymer J.*, **13**, 399 (1981).

Olabisi, O. and Simha, R., "Pressure-Volume-Temperature Studies of Amorphous and Crystallizable Polymers. I. Experimental", *Macromolecules*, **8**, 206 (1975).

Panayiotou, C. and Vera, J. H., "Statistical Thermodynamics of r-Mer Fluids and Their Mixtures", *Polymer J.*, **14**, 681 (1982).

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., "Numerical Recipes in Fortran-The Art of Scientific Computing", 2nd ed., Ch. 9, Cambridge University Press, 1992.

Prigogine, I., Bellemans, A. and Mathot, V., "The Molecular Theory of Solutions", North-Holland Publishing Co., Amsterdam, 1957.

Quach, A. and Simha, R., "Pressure-Volume-Temperature Properties and Transitions of Amorphous Polymers; Polystyrene and Poly(orthomethylstyrene)", *J. of Applied Physics*, **42**(12), 4592 (1971).

Rodgers, P. A., "Pressure-Volume-Temperature Relationships for Polymeric Liquids: A Review of Equations of State and Their Characteristics Parameters for 56 Polymers", *J. of Applied Polym. Sci.*, **48**, 1061 (1993).

Sanchez, I. C. and Lacombe, R. H., "An Elementary Equation of State for Polymer Liquids", *Polym. Letters Edition*, **15**, 71 (1977).

Sanchez, I. C. and Lacombe, R. H., "Statistical Thermodynamics of Polymer Solutions", *Macromolecules*, **11**(6), 1145 (1978).

Simha, R. and Somcynsky, T., "On the Statistical Thermodynamics of Spherical and Chain Molecular Fluids", *Macromolecules*, **2**, 341 (1969).

Smirnova, N. A. and Victorov, A. I., "Thermodynamic Properties of Pure Fluids and Solutions from the Hole Group Contribution Model", *Fluid Phase Equilibria*, **34**, 235 (1987).

Yoo, K.-P., Kim, H. Y. and Lee, C. S., "Unified Equation of State Based on the Lattice Fluid Theory for Phase Equilibria of Complex Mixtures. Part I. Molecular Thermodynamic Framework", *Korean J. Chem. Eng.*, **12**(3), 277 (1995a).

Yoo, K.-P., Kim, H. Y. and Lee, C. S., "Unified Equation of State Based on the Lattice Fluid Theory for Phase Equilibria of Complex Mixtures. Part II. Application to Complex Mixture", *Korean J. Chem. Eng.*, **12**(3), 289 (1995b).

Yoo, K.-P., Shin, M. S., Yoo, S. J., You, S. S. and Lee, C. S., "A New Equation of State Based on Nonrandom Two-Fluid Lattice Theory for Complex Mixtures", *Fluid Phase Equilibria*, **111**, 175 (1995c).

You, S. S., Yoo, K.-P. and Lee, C. S., "Modeling of Super-critical Fluid Phase Equilibria Using a New Nonrandom Lattice Fluid Theory", *J. Supercritical Fluids*, **6**, 69 (1993).

You, S. S., Yoo, K.-P. and Lee, C. S., "An Approximate Nonrandom Lattice Theory of Fluids. General Derivation and Application to Pure Fluids", *Fluid Phase Equilibria*, **93**, 193 (1994a).

You, S. S., Yoo, K.-P. and Lee, C. S., "An Approximate Nonrandom Lattice Theory of Fluids. Mixtures", *Fluid Phase Equilibria*, **93**, 215 (1994b).