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Abstract — Specific volumes of common pure polymers such as low- and high-density poly(ethylene), poly(n-butyl
methacrylate), poly(styrene), and poly(o-methylstyrene) were calculated by the NLF and the MF-NLF equations of
state, which were developed from nonrandom lattice-hole theory. Both models contain only two molecular paramet-
ers for a pure r-mer. The NLF model is based on the rigorous approximation of lattice-hole theory and thus it is
somewhat complicated in practice. The MF-NLF model is based on the two-fluid approximation of the same lattice-
hole theory and thus is relatively more semi-empirical than the NLF, while preserving comparable accuracy. In this
work the models were comparatively applied to the calculation of the specific volumes of pure polymers, and the

results obtained to date were presented with emphasis on the practical utility of the models.
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INTRODUCTION

The influence of equation-of-state (EOS) properties on the
thermodynamic behavior of polymer systems has received a
great deal of attention over the past few decades. As a result,
considerable effort has been made to date towards the refine-
ment of statistical-mechanical theories of polymeric fluids. The
nearest-neighbor lattice statistical-mechanical theory of Gug-
genheim [1952] and the cell theory of Prigogine et al. [1957]
had a great impact, theoretically and experimentally, on ther-
modynamic research related to polymer systems. Since then,
many EOS theories of polymeric fluids have been proposed.

Some well-known EOSs stem from cell theory [Simha and
Somcynsky, 1969, 1971; Flory, 1965; Beret and Prausnitz, 1975;
Nies and Stroeks, 1990; etc.]. However a cell-model type par-
tition function requires a separation of internal and external
degrees of freedom. External degrees of freedom attributable
to a segment of a polymer chain are less than for a similar
small molecule. For example, Prigogine et al. [1957] introduc-
ed a new parameter ¢ to characterize the decrease in the ex-
ternal degrees of freedom. On the other hand, since the lattice
fluid (Ising) theory [Guggenheim, 1952] is not based on a cell
concept, the question of how external and intemal degrees of
freedom are separated is not necessarily encountered, and the
introduction of a ‘c’ parameter is not required.

After the pioneering work of Sanchez and Lacombe [1977,
1978] on the EOS for the Ising fluid, many EOSs originating
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from lattice fluid theory have also been proposed [Okada and
Nose, 1981; Panayiotou and Vera, 1982; Kumar et al., 1987;
Smirnova and Victorov, 1987; etc.]. In the previous papers
[You et al., 1993, 1994a, b; Yoo et al., 1995a, b, c], the pre-
sent authors briefly reviewed the existing Ising theories after
Guggenheim [1952].

Recently, a new rigorous EOS based on the nonrandom
lattice-fluid theory (called ‘NLF) and its simplification by a
multi fluid-nonrandom lattice fluid theory (called 'MF-NLF)
of pure fluids and their solutions have been formulated by the
present authors [You et al., 1993, 1994a, b; Yoo et al,, 1995a,
b, ¢, Lee and Yoo, 1997). These two theories require only two
EOS parameters for each pure component and one binary par-
ameter for a mixture. Our general objective in the present pa-
per is to survey the applicability of the NLF and the MF-NLF
theory to volumetric properties of pure polymers.

EOS PROPERTIES FOR PURE POLYMERS
1. NLF-EOS Theory
As we have discussed elsewhere [You et al., 1993, 1994a,

b; Yoo et al., 1995a, b, c], the equation of state based on the
approximate nonrandom lattice hole theory for pure compo-

nent is as follows:
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B=1/&T and N, is Avogadro's number; 1, is the segment num-
ber of an r-mer and q, is the segment surface area parameter.
Between these two parameters the relation given in Eq. (6)
can be used for open chain r-mers. We set the coordination
number z=10 and the unit cell volume V;=9.75 cm’mol ™
[You et al., 1994a]. Thus, for a pure fluid we need to deter-
mine only two independent molecular parameters, V; and &,.
In the case of polymers, V; is relatively insensitive with re-
spect to temperature. However, g&; is in general a function of
temperature; it was regressed at each isotherm and made a
simple function of temperature in practice. It is

fli_l=Ea +E,(T-T) )

where T, is a reference temperature that is arbitrarily set as
298.15 K. Other expressions such as fugacity coefficients,
molar configurational internal energy, and second order ther-
modynamic functions (i.e., the thermal expansion coefficient
o, the isothermal compressibility coefficient B, etc.) are given
elsewhere [You et al., 1993, 1994a, b].

Although the NLF-EOS applicable for pure components
given above looks simple, it becomes significantly complicat-
ed for the extension to multicomponent systems since it was
based on the multidimensional series expansion of the con-
figurational Helmholtz free energy of nonrandom lattice-hole
theory [You et al., 1994a, b].

2. MF-NLF-EOS Theory

As discussed elsewhere [Yoo et al., 1995; Lee and Yoo,
1997), to simplify the NLF-EOS given above, the present au-
thors introduced the concept of the two-fluid approximation
with respect to the nonrandom lattice and hole contribution
of the original NLF-EOS. The expression of the MF-NLF-

Table 1. The energy and volume parameters for the NLF model'

EOS is
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For pure fluids we set g,=0. This EOS can be regarded as a
simplified version of the previous NLF theory and the de-
finition of the variables is identical with that of the NLF.
Thus, this EOS still contains only two pure molecular parame-
ters, V; and &, for a pure system. For &, the temperature-
dependent formular given by Eq. (8) was used.

These two EOSs are readily expandable to multicomponent
systems with the introduction of a binary interaction parameter.
In this paper, we omit those detailed expressions of the ther-
modynamic functions of the two models for general mixture
systems [You et al., 1994a, b; Lee and Yoo, 1997].

DATA REDUCTION

To evaluate comparatively the utility of the NLF and MF-
NLF models in the calculation of volumetric properties of
pure polymeric substances, we arbitrarily selected five com-
mon polymers: high density poly(ethylene, HDPE) [Hellwege
et al, 1961; Rodgers, 1993], low density poly(ethylene, LDPE)
[Hellwege et al., 1961; Rodgers, 1993], poly(z-butyl metha-
crylate, PnBMA) [Olabisi and Simha, 1975), poly (styrene, PS)
[Quach and Simha, 1971), poly(o-methyl polystyrene) [Quach
and Simha, 1971].

In applying the EOSs to polymer systems, we estimated the
molecular parameters, V; and e, from the experimental P-p-
T data by the numerical bisection method [Press et al,, 1992].
In the regression, the initial estimates of g, were provided
by a value around 100, and V; was given by a value of 0.7
times the molecular weight of a candidate polymer in gen-
eral. The best fitted EOS parameters, V; and ¢, for each
pure polymer for the NLF-EOS and MF-NLF-EOS with ab-
solute average error deviations are summarized in Tables 1 and

2, respectively.

E,

-

E, v,

Polymer K _ cm’g AAD (%)
High-density polyethylene 124.49832 .05120 1.09963 .469
Low-density polystyrene 115.18157 .10513 1.09445 309
PnBMA 118.11379 10507 .88553 577
Polystyrene 130.90941 .08278 .88600 283
Poly(orthomethylstyrene) 139.32543 05208 90828 223

'V; =the temperature independent specific volumes

AAD=1/(number of data) Z(jvolume,., — volume,,{/volume,,, x 100)
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Table 2. The energy and volume parameters for the MF-NLF model'
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1 E.
Polymer K

E,

\'A
cm’/g

AAD (%)

High-density polystyrene 133.80667
Low-density polystyrene 122.46545
PoBMA 132.09898
Polystyrene 146.18205
Poly(orthomethy!styrene) 160.63812

.012020
.08800
04216
03096
—.03558

1.08668
1.08501
.88036
87741
.89826

424
267
419
247
228

RESULTS AND DISCUSSION

Experimental and calculated specific volumes of high-den-
sity poly(ethylene, HDPE) [Hellwege et al., 1961; Rodgers,
1993] at various temperatures and pressures by the NLF and
the MF-NLF are shown in Fig. 1. Although the formulation
of the NLF is self-consistent with a sound theoretical basis,
a less complicated model would be more convenient in en-
gineering-oriented phase equilibrium calculations. Thus, with
this background in mind, we developed the MF-NLF model
while preserving comparable accuracy with respect to the NL-
F. As can be seen from Tables 1 and 2, the overall AAD
by the NLF was found to be 0.464, whereas it was 0.424
for the case of MF-NLF. Both models showed reasonably com-
parable accuracy although the predicting capacity of the MF-
NLF was slightly better than that of the NLF. In Fig. 2, a
similar comparison of both models is shown for the experi-
mental specific volumes of the low-density poly(ethylene, LD-
PE) [Hellwege et al.,, 1961; Rodgers, 1993). Again the AAD
was 0.309 for the case of the NLF and 0.267 for the case of
the MF-NLF.

In Fig. 3, the experimental and calculated specific volumes
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Fig. 2. Calculated and experimental specific volumes of low-
density poly(ethylene, LDPE) as functions of temper-
ature and pressure.
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Fig. 1. Calculated and experimental specific volumes of high-
density poly(ethylene, HDPE) as functions of temper-
ature and pressure.
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Fig. 3. Calculated and experimental specific volumes of poly
(n-butyl methacrylate, PnBMA) as functions of temper-
ature and pressure.
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Fig. 4. Calculated and experimental specific volumes of poly
{styrene, PS) as functions of temperature are pressure.

by NLF (AAD=0.577) and MF-NLF (AAD=0.419) of poly(n-
butyl methacrylate, PnBMA) [Olabisi and Simha, 1975] are
shown. Both models predict the volumetric properties of Pn-
BMA quantitatively well enough for the purpose of engineer-
ing calculations.

As final demonstrations of the applicability of the NLF
and the MF-NLF to the volumetric properties of polymers,
the calculated results for poly(styrene, PS) [Quach and Simha,
1971} and poly(o-methylstyrene) [Quach and Simha, 1971] are
shown in Figs. 4 and 5, respectively.

Since we have demonstrated elsewhere in detail [You et
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Fig. 5. Calculated and experimental specific volumes of poly
(o-methyistyrene) as functions of temperature and pres-

sure.
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al, 1993, 1994a, b; Yoo et al,, 1995a, b, c] the theoretical
soundness of both EOSs and their advantages over the exist-
ing models in the same genre, such as the EOSs after Sanchez
and Lacombe [1977], Panayiotou and Vera [1982], and Kumar
et al. [1987], we omit here further comparisons of the practi-
cal applicability of the two models with other existing models.

CONCLUSION

We have demonstrated the practical applicability of the
NLF and the MF-NLF EOSs to the calculation of specific
volumes of common pure polymers. The advantage of the
NLF is that it is based on a sound statistical-mechanical basis
of nonrandom lattice-hole theory after Guggenheim [Guggen-
heim, 1952]. However, the MF-NLF model is based on a semi-
theoretical improvement of the lattice-hole by the introduction
of a nonrandom two-fluid approximation with respect to the
residual nonrandomness contribution. Thus, the expression
of the MF-NLF is much simpler than that of the NLF.

We found that both models appear to be equally applicable
to engineering-oriented volumetric properties calculations of
various polymer systems. As for the preferential utilization of
the NLF or the MF-NLF models, the present authors wish to
leave that to the users.
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NOMENCLATURE

: coefficient in Eq. (8) [ ]

: Boltzmann factor [JK ']

4+ : Avogadro's number [mol_’]

: pressure [MPa]

: segment surface area parameter [ ]
: segment number [— ]

: temperature, T, = reference temperature, 298.15 [K]
: system volume [cm’]

: coefficient in Eq. (9) [—]

4 unit lattice cell volume [cm’]

: coordination number [ - ]

=

°

<< <0 vwZ~m

N

Greek Letters

oy : thermal expansivity [K™']

B : Boltzmann factor, =1/kT [—]

B, : isothermal compressibility factor [bar ']

€, : molecular interaction energy between molecules 1 [ ]
€, : effective surface area fraction of holes [—]

0, : effective surface area fraction of component 1 [—]

p :system density [1/cm’]

T : nonrandomness factor between hole, 0, and occupied

molecule, 1 [—]
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