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Abstract - Specific volumes of common pure polymers such as low- and high-density poly(ethylene), poly(n-butyl 
methacrylate), poly(styrene), and poly(o-methylstyrene) were calculated by the NLF and the MF-NLF equations of 
state, which were developed from nonrandom lattice-hole theory. Both models contain only two molecular paramet- 
ers for a pure r-mer. The NLF model is based on the rigorous approximation of lattice-hole theory and thus it is 
somewhat complicated in practice. The MF-NLF model is based on the two-fluid approximation of the same lattice- 
hole theory and thus is relatively more semi-empirical than the NLF, while preserving comparable accuracy. In this 
work the models were comparatively applied to the calculation of the specific volumes of pure polymers, and the 
results obtained to date were presented with emphasis on the practical utility of the models. 
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INTRODUCTION 

The influence of equation-of-state (EOS) properties on the 
thermodynamic behavior of polymer systems has received a 
great deal of attention over the past few decades. As a result, 
considerable effort has been made to date towards the refine- 
ment of statistical-mechanical theories of polymeric fluids. The 
nearest-neighbor lattice statistical-mechanical theory of Gug- 
genheim [1952] and the cell theory of Prigogine et al. [1957] 
had a great impact, theoretically and experimentally, on ther- 
modynamic research related to polymer systems. Since then, 
many EOS theories of polymeric fluids have been proposed. 

Some well-known EOSs stem from cell theory [Simha and 
Somcynsky, 1969, 1971; Flory, 1965; Beret and Pmusnitz, 1975; 
Nies and Stroeks, 1990; etc.]. However a cell-model type par- 
tition function requires a separation of internal and external 
degrees of freedom. External degrees of freedom attributable 
to a segment of a polymer chain are less than for a similar 
small molecule. For example, Prigogine et al. [1957] introduc- 
ed a new parameter 'c' to characterize the decrease in the ex- 
ternal de~rees of  freedom. On the other hand, since the lattice 
fluid (lsing) theory [Guggenheim, 1952] is not based on a cell 
concept, the question of how external and internal degrees of 
freedom are separated is not necessarily encountered, and the 
introduction of a 'c' parameter is not required. 

After the pioneering work of Sanchez and Lacombe [1977, 
1978] on the EOS for the Ising fluid, many EOSs originating 
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from lattice fluid theory have also been proposed [Okada and 
Nose, 1981; Panayiotou and Vera, 1982; Kumar et al., 1987; 
Smirnova and Victorov, 1987; etc.]. In the previous papers 
[You et al., 1993, 1994a, b; Yoo et al., 1995a, b, c], the pre- 
sent authors briefly reviewed the existing Ising theories after 
Guggenheim [1952]. 

Recently, a new rigorous EOS based on the nonrandom 
lattice-fluid theory (called 'NLF') and its simplification by a 
multi fluid-nonrandom lattice fluid theory (called 'MF-NLF') 
of pure fluids and their solutions have been formulated by the 
present authors [You et al., 1993, 1994a, b; Yoo et al., 1995a, 
b, c; Lee and Yoo, 1997]. These two theories require only two 
EOS parameters for each pure component and one binary par- 
ameter for a mixture. Our general objective in the present pa- 
per is to survey the applicability of the NLF and the MF-NLF 
theory to volumetric properties of pure polymers. 

EOS PROPERTIES FOR PURE POLYMERS 

1, NLF-EOS Theory 
As we have discussed elsewhere [You et al., 1993, 1994a, 

b; Yoo et al., 1995a, b, c], the equation of state based on the 
approximate nonrandom lattice hole theory for pure compo- 
nent is as follows: 

/Vn,Bj[2 k +(~-1 in(l - 
(1) 

where 
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V1 NA Vurt (3) 
P = - V -  = V 

01 - (ql/rl) P (4) 
1 + p (q l /q  - 1) 

0o = 1 - 01 (5) 

zql = zr 1 - 2r t + 2 (6) 

/~=l/kT and NA is Avogadro's number; rl is the segment num- 
ber of an r-mer and q~ is the segment surface area parameter. 
Between these two parameters the relation given in Eq. (6) 
can be used for open chain r-mers. We set the coordination 
number z=10 and the unit cell volume V,=9.75 cm3mol -~ 
[You et al., 1994a]. Thus, for a pure fluid we need to deter- 
mine only two independent molecular parameters, V~ and en. 
In the case of polymers, V~ is relatively insensitive with re- 
spect to temperature. However, e~ is in general a function of 
temperature; it was regressed at each isotherm and made a 
simple function of temperature in practice. It is 

el--L = Eo + E b (T - To) (8) 
k 

where To is a reference temperature that is arbitrarily set as 
298.15 K. Other expressions such as fugacity coefficients, 
molar configurational internal energy, and second order ther- 
modynamic functions (i.e., the thermal expansion coefficient 
al, the isothermal compress~ility coefficient/~ etc.) are given 
elsewhere [You et al., 1993, 1994a, b]. 

Although the NLF-EOS applicable for pure components 
given above looks simple, it becomes significantly complicat- 
ed for the extension to multicomponent systems since it was 
based on the multidimensional series expansion of the con- 
figurational Helmholtz free energy of nonrandom lattice-hole 
theory [You et al., 1994a, b]. 
2. MF-NLF-EOS Theory 

As discussed elsewhere [Yoo et al., 1995; Lee and Yoo, 
1997], to simplify the NLF-EOS given almve, the present au- 
thors introduced the concept of  the two-fluid approximation 
with respect to the nonrandom lattice and hole contribution 
of the original NLF-EOS. The expression of the MF-NLF- 

EOS is 

(9) 
2VMr ~ Oor~l + 01 

where 

z~l = exp[fl(eu - e00] (10) 

For pure fluids we set eo~=0. This EOS can be regarded as a 
simplified version of the previous NLF theory and the de- 
finition of the variables is identical with that of the NLF. 
Thus, this EOS still contains only two pure molecular parame- 
ters, V~ and e11, for a pure system. For el~, the temperature- 
dependent formular given by Eq. (8) was used. 

These two EOSs are readily expandable to multicomponent 
systems with the introduction of a binary interaction parameter. 
In this paper, we omit those detailed expressions of the ther- 
modynamic functions of the two models for general mixture 
systems [You et al., 1994a, b; Lee and Yoo, 1997]. 

DATA R E D U C T I O N  

To evaluate comparatively the utility of the NLF and MF- 
NLF models in the calculation of volumetric properties of 
pure polymeric substances, we arbitrarily selected five com- 
mon polymers: high density poly(ethylene, HDPE) [HeUwege 
et al., 1961; Rodgers, 1993], low density poly(ethylene, LDPE) 
[Hellwege et al., 1961; Rodgers, 1993], poly(n-butyl metha- 
crylate, PnBMA) [Olabisi and Simha, 1975], poly (styrene, IS)  
[Quach and Simha, 1971], poly(o-methyl polystyrene) [Ouach 
and Simha, 1971]. 

In applying the EOSs to polymer systems, we estimated the 
molecular parameters, V~ and en, from the experimental P-p- 
T data by the numerical bisection method [Press et al., 1992]. 
In the regression, the initial estimates of exl were provided 
by a value around 100, and V~ was given by a value of 0.7 
times the molecular weight of a candidate polymer in gen- 
eral. The best fitted EOS parameters, V~ and eu, for each 
pure polymer for the NLF-EOS and MF-NLF-EOS with ab- 
solute average error deviations are summarized in Tables 1 and 
2, respectively. 

Table 1. The energy and volume parameters for the NLF model  t 

Eo 
Polymer K 

E~ V; 
-- cln3/g m A D  (%) 

High-density polyethylene 124.49832 
Low-density polystyrene 115.18157 
PnBMA 118.11379 
Polystyrene 130.90941 
Poly(orthomethylstyrene) 139.32543 

.05120 1.09963 .469 

.10513 1.09445 .309 

.10507 .88553 .577 

.08278 .88600 .283 

.05208 .90828 .223 
tV 1" =the temperature independent specific volumes 
AAD=l/(number of data) Y.,(lvolume,~ - volume,~l/volumeqo • 100) 
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Table 2. The energy and volume parameters for the MF-NLF model t 
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E. F~ v; 
Polymer K - cm3/g AAD (%) 

High-density polystyrene 133.80667 .012020 1.08668 .424 
Low-density polystyrene 122.46545 .08800 1.08501 .267 
P~BMA 132.09898 .04216 .88036 .419 
Polystyrene 146.18205 .03096 .87741 .247 
Poly(orthomethylstyrene) 160.63812 - .03558 .89826 .228 

RESULTS AND DISCUSSION 

Experimental and calculated specific volumes of high-den- 
sity poly(ethylene, HDPE) [Hellwege et al., 1961; Rodgers, 
1993] at various temperatures and pressures by the NLF and 
the MF-NLF are shown in Fig. 1. Although the formulation 
of the NLF is seE-consistent with a sound theoretical basis, 
a less complicated model would be more convenient in en- 
gineering-oriented phase equilibrium calculations. Thus, with 
this background in mind, we developed the MF-NLF model 
while preserving comparable accuracy with respect to the NL- 
F. As can be seen fxom Tables 1 and 2, the overall AAD 
by the NLF was found to be 0.464, whereas it was 0.424 
for the case of MF-NLF. Both models showed reasonably com- 
parable accuracy although the predicting capacity of the MF- 
NLF was slightly better than that of the NLF. In Fig. 2, a 
similar comparison of both models is shown for the experi- 
mental specific volumes of the low-density poly(ethylene, LD- 
PE) [Hellwege et al., 1961; Rodgers, 1993]. Again the AAD 
was 0.309 for the case of the NLF and 0.267 for the case of 
the MF-NLF. 

In Fig. 3, the experimental and calculated specific volumes 

E 
-1 

"5 > 

1.32 

1.30' 

1.28' 

1.26 

1.24 

1.22 

1.20 

1.18 

1.16 

1.14 

1.12 
0 

Exp. data of 
Hellwege et a1.(1961) 

\ �9 393.85 K 
�9 402.95 

X \ �9 413.65 
�9 423.65 
�9 4 4 , 6 5  

_ _ . _ _ . _ _  . . . . . . .  E o s  

'~-~%.~,, ~L~ " ' . e ~  

L I I 
50 100 150 200 

Pressure (MPa) 

Fig. 2. Calculated and experimental specific volumes of low- 
density poly(ethylene, LDPE) as functions of t e m p e r -  
a t u r e  and pressure. 
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Pig. 1. Calculated and experimental specific volumes of high- 
density poly(ethylene, HDPE) as functions of temper- 
ature and pressure. 
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Fig. 3. Calculated and experimental specific volumes of poly 
(n-bu~4 meehacryla~ PnBMA) as functions of ~mper- 
ature and pressure. 
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Fig. 4. Calculated and experimental specific volumes of  poly 
(styrene, PS) as functions of temperature are pressure. 

by NLF (AAD--0.577) and MF-NLF (AAD--0.419) of poly(n- 
butyl methacrylate, PnBMA) [Olabisi and Simha, 1975] are 
shown. Both models predict the volumetric properties of Pn- 
BMA quantitatively well enough for the purpose of engineer- 
ing calculations. 

As final demonstrations of the applicability of the NLF 
and the MF-NLF to the volumetric properties of polymers, 
the calculated results for poly(styrene, PS) [Ouach and Simha, 
1971] and poly(o-methylstyrene) [Quach and Simha, 1971] are 
shown in Figs. 4 and 5, respectively. 

Since we have demonstrated elsewhere in detail [You et 
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al., 1993, 1994a, b; Yoo et al., 1995a, b, c] the theoretical 
soundness of  both EOSs and their advantages over the exist- 
ing models in the same genre, such as the EOSs after Sanchez 
and l.acombe [1977], Panayiotou and Vera [1982], and Kumar 
et al. [1987], we omit here further comparisons of the practi- 
cal applicability of the two models with other existing models. 

C O N C L U S I O N  

We have demonstrated the practical applicability of the 
NLF and the MF-NLF EOSs to the calculation of specific 
volumes of  common pure polymers. The advantage of the 
NLF is that it is based on a sound slafisti"~l-mechanical basis 
of nonrandom lattice-hole theory after Guggenheim [Guggen- 
heim, 1952]. However, the MF-NLF model is based on a semi- 
theoretical improvement of the lattice-bole by the introduction 
of a nonrandom two-fluid approximation with respect to the 
residual nonrandomness contribution. Thus, the expression 
of the MF-NLF is much simpler than that of the NLF. 

We found that both models appear to be equally applicable 
to engineering-oriented volumetric properties calculations of  
various polymer systems. As for the preferential utilization of 
the NLF or the MF-NLF models, the present authors wish to 
leave that to the users. 
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N O M E N C L A T U R E  

E= : coefficient in Eq. (8) [ - ]  
k : Boltzmann factor [JK -1] 
NA : Avogadro's number [mol-1] 
P : pressure [MPa] 
q : ~gment surface area parameter [ -  ] 
r : segment number [ -  ] 
T : temperature, To = reference temperature, 298.15 [K] 
V : system volume [cm 3] 
V= : coefficient in Eq. (9) [ -  ] 
VH : unit lattice cell volume [cm 3] 
z : coordination number [ -  ] 

Greek Letters 
(xx : thermal expansivity [K-1] 
fl : Boltzmann factor, =l/kT [ - ]  

: isothermal compressibility factor [bar-l] 
ell : molecular interaction energy between molecules 1 [ -  ] 
0o : effective surface area fraction of holes [ -  ] 
01 : effective surface area fraction of component 1 [ - ] 
p : system density [1/cm 3] 
zol : nonrandomness factor between hole, 0, and occupied 

molecule, 1 [ - ]  
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